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Abstract The behaviour of financial asset price data when observed intra-day is quite different from
these same processes observed from day to day and longer sampling intervals. Volatility estimates obtained
from intra-day observed data are badly distorted if anomalies and intra-day trading patterns are not
accounted for in the estimation process. In this paper [ consider conditional velatility estimators as special
cases of a general stochastic volatility structure. The theoretical asymptotic distribution of the measurement
error process for these estimators is censidered for particular features observed in intra-day financial asset
price processes. Specifically, I consider the effects of (i) induced serial correlation in returns processes, (if)
excess kurtosis in the underlying unconditional distribution of returns, (iii) market anomalies such as market
opening and closing effects and (iv) failure to account for intra-day fading patterns. These issues are

considered with applications in option pricing/irading strategies and the constant/dynamic hedging

frameworks in mind.

I INTRODUCTION

One issue considered in Nelson {1996} is whether
it is possible to formulate an ARCH data
generation process that is similar to the trus
process. The distribution of the sample paths
generated by the ARCH structure and the
underlying diffusion process are assumed fo be
"close” for increasingly finer discretizations of the
observation  interval.” Maximum  likelihood
estimates are difficult to obtain from stochastic
differential eguations of time-varying volatility
common in the finance literature. If the results in
Nelson hold for ‘real time' data when ARCH
structures approximate a diffusion process then
these ARCH structures may be usefully employed
in option pricing equations. In this paper I
consider the ARCH structure as a special case of a
general stochastic  volatility  structure. One
advantage of an ARCH structure over a general
stochastic volatility structure lies in computational
simplicity. In the ARCH structure it is not
necessary for the underlying processes to be
stationary or ergodic. The crucial assumption in an
option pricing context is that these assumed
processes approach a diffusion limit. These
assumed diffusion lHmits have been derived for
processes assumed to be observed from day to day
records. - :

The specific concern in this paper is the effect on
the asymptotic distribution of the measurement

error process and on parameter estimates, obtained.

from the Generalised ARCH {GARCH{l,1})
equations for the conditional variance, as the
observation interval approaches transactions

records (d—0). Three issues are considered for
cases where the diffusion Hmit may not be
achieved at these observation intervals, The first
issue is the effect of mis-specifying the dynamics
of the first moment generating equation on
resultant GARCH(1,1) parameter estimates. The
second issue is the effect on measures of
persistence obtained from the GARCH structure
when imcreasing kurtosis is induced in the
underlying unconditional -~ distribution as d—0.
This leads to a third issue which is concerned with
evaluating effects of inclusion of weighting
{mixing) variables on perameter estimates
obtained from these GARCH{i,1} equations. If
these mixing variables are important then standard
GARCH equation estimates wiil be seriously
distorted. These mixing variables may proxy the
ievel of activity within particular markets or
account for common velatility of assets trading in
the same market.

2.8TOCHASTIC VOLATILITY AND GARCH

Melson and Foster {1994) derive and discuss
properties for the ARCH oprocess as the
observation interval reduces to daily records
(h—0) when the underlying process is driven by
an assumed continuous diffusion process. Nelson
and Foster (1991) generalised a Markov process
with two state variables, , X, and &, only one
of which X, is ever directly observable. The
conditional variance , o} is defined conditional on

the increments in &, per unit tme and

!
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conditional on an information set |, G, . Modifying

the notation from h to d (to account for intra-day
discretely observed data) and employing the
notatien d-»0 to indicate reduction in the
observation interval from above, when their
assumptions 2, 3 and 1' hold, when d is small,
X o, o)) is referred to as a near diffusion if
forany T,

0 = T g Cﬂ, (dX{’ ga(d o'0‘2 ))OSJST = (X!’ w(a’f))ﬁs!ﬂ”

If we assume these data penerating processes are
near diffusions then the general discrete time
stochastic volatility structure, defined in Nekson
and Foster (1991), may be described using the
foliowing modified notation:

a'X(M)d dXicd tu(kad!akd)
= +d +
qp(do‘z(k‘*'“d) qﬂ(d G'fd) ';i’(de:d O’M)
2 b4
iT e Ap,x(kadﬁdo-hi) dzl,kd
a4

A¢,:(kad' 3d de) A1 (JXH 2d gh:') d ZI,M
0y

(aZ1 g0 Z14i)imais LLd. mean zero and identity

covariance matrix. In equation (1) d is the size of
the observation interval, X may describe the asset

price retumn and o the volatility of the process. It
is not necessary to assume the data generating
processes are stationary or egodic but the crucial
assumption is that the data generating processes
are near diffusions.

In the ARCH specification ,Z,,, is a function of

¢ L4 sothat gl (k) can be inferred from past

vahues of the one observable process , &, . This
is not true for a general stochastic volatility

structure where there are two driving noise terms.
For the first order Markev ARCH siructure a
Az A
strictly increasing function of estimates , o, (, 4,)
of the conditional variance process ,o/(,4) is
defined as ¢{(c') and estimates of the conditional
mean per unit of time of the increments in X and
¢{c’) are defined as. u(x,o) and x(x,0).

Estimates of ,o;, are updated by the recursion

Al al a A
¢(d0"(hud)=gﬁ(adw)-&dﬁ((d}_’w,ddu)-i-

o @
d%a(‘;X&dvd g*ﬂ’)g(d Zl,]m' ri K a5 T ig)

fg(.),a(.),;ﬂz(.)and g(.}are continuous on
bounded (p(c’),x) sets and g{z,,x,c’) assumed
continuous everywhere with the first three
derivatives of g with respect to z, well defined
and bounded. The function g(,Z ,,) is
normalised to have mean zero and unit conditional
variance. Non-zero drifts in ¢(, o)} are allowed

for in the J'é( term and non-unit conditional
variances accounted for in the a() term. The
second term on the right measures the change in
¢{, o) forecast by the ARCH structure while
the last term measures the surprise change.

The GARCH(1,1) structure is obtained by setting

ploy=c")= G'l,inf(x,cr) ={w - f?),
glz) = (zf - l)/SD(zf),
and a(x,0)=a.c®.SD(z}).

The parameters @,6 and « index a family of

GARCH(1,1) structures. In a similar manner the
EGARCH volatility structure can be defined. That

is by selecting ¢(.),;c(.),g{.) and a{.) various
“filters’ can be defined within this framework.

Other conditions in Neison and Foster (1991)
define the rate at which the normalised
measurement emror process (0, mean reverts

relative to ,.X,,, ). It becomes white noise as
d-»0 on a standard time scale but operates on a
faster time scale, mean-reverting more rapidly.
Asymptotically optimal choice of a (), and ¢(.}
given g(} can be considered with respect to
minimising the asymptotic variance of the
measurement error. This is considered on a faster
time scale (F+7) than T. The asymptotically
optimal choice of g (.} depends upon the assumed
relationship between Z, and Z,. In the ARCH

structure £, is a function of Z, so that the level

driving ,o07 can be recovered from shocks

i

driving , X7 . In the absence of further structure in
the equation specified for o7 we are unable to
recover information about changes in & . Their
discuission is strictly in t8ims of constrocting a
sequence of optimal ARCH filters to minimise the
asymptotic variance of the asymptotic distribution
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of the measurement errors. This approach is not
the same as choosing an ARCH structure that
minimises the measurement error variance for

each d.
The asymptotic distribution of the measurement
error process, for large T and small d,

1
[dc'rud% -',,.O': LK |(er’dU;uXr})J = (%UI,X)
N

derivatives evaluated as ¢'(, o)) and ¢'(, o))
etc and the notation simplified as ¢' and ¢’ is
approximately normal with mean

KON G- 2V - A, 19+ N G IAEY]

{a-EZ,. 2.1}
+

2ac.[u, Wl';d]-E[g:]
{a.E[Z,.g.1}

and variance

d% (20%¢).Aa* 1|+ /[’ Y -2aA .CoviZ,, g} o' g
a.£17, 2.1

General results in Nelson and Foster (1991 and
1994} for the GARCH(1,1) structure are that
GARCH(1,1) can be more accurately measured
firstly the less variable and the smaller is o],
second the thinper the tails of Z, and third the
more the frue data generating mechanism
resembles an ARCH structire as opposed to a
stochastic volatility structure. If the true data
generating process i GARCH(1,I) then
Corr(Z},Z,)=1.

As d—»0 the first result will generally hold and the
second can be checked from the unconditional
distribution of the returns process. The latter result
is the most difficult io evaluate. Now reconsider
some assumptions necessary o oblain these resuits
and reasons these assumptions may not hoid when
d-—=0.

(1) Mis-specification of the difference between the

estimated and true drift in mean, [, z,~, 2], is
assumed fixed as d—0 so that effecis of mis-
specifying this. drift has an effect that vanishes. at

rate d’* and is negligible asymptotically. These
terms do not appear in the expression for the

variance of ‘the adymiptotic’ distribution 'of "the ™

measurement error. As d—{, the effect of bid/ask
bounce and order splifting in futures price
processes and non-trading induced effects on

market indices becomes more severe. Mis-
specification of the drift in the mean is not
constant. Whether this effect transfers to estimates
of conditional variances is an empirical issue.

(i1) The conditional variance of the increments in
., invelves the fourth moment of ,Z,,, so that
the infiuence of this fourth moment remains as the
diffusion limit is approached. Excess kurtosis is a
feature of intra-day financial price changes.

(iil) Values of K , and A, are considered fixed as
d—0 so that effects of mis-specifying the drift in

o has an effect that also vanishes at rate d°% . As

weli, aithough these drift terms enter the
exprassion  for the asymptotic bias of the

measurement error these also do not appear in the
expression for the asymptotic variance. The term
g represents part of the “surprise’ change in the
recursion defined in equation {2) and is directly
linked to departures from normality observed in
point (ii). These departures from normality can be
generated by extremes in Z, induced by large
jumps in the underlying distribution, In this case
first and second derivatives of ¢ may be
discontinuous throughout the sample space as
well. Then the expression for the bias in this
asymptotic distribution of the measurement errors
may be explosive.

{iv} The ARCH specification of the drift in mean

and variance only enters the 0 _{d %) terms of the

measurement  error.  Asymptotically,  the
differences in  the conditional  variance
specifications are more important, appearing in the

W s f
0,(d7) terms. If the conditional variance
specification is not correct then the measurement
error variance s affected. This is because
matching the ARCH and true variance of the
variance cannot proceed.

3, SERIAL CORRELATION IN RETURNS

The simplest GARCH structure derived from
equation {1} for the conditional variance is the
GARCH(1,1):

h (3)

i

— 2
=@+oE, + BN

A {c}) the conditional variance at time.t,ﬁf L are
squared unconditional shocks generated from any

assumed first moment equation and 0, §, <1

cand o, + £, 1. This parameterisation is a

parsimonious representation of an ARCH(p"
process where a geometrically declining weighting

pattern on lags of ¢° is imposed. This is easily
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seen by successive substitution for
ho(j=L..,Jyas J o,

Consider an AR(l} equation in the log of the
levels, with the autoregressive parameter, ¢, fixed
at 1, as representing one mis-specified spot asset
price process. An alternative specification in the
presence of non-synchronous induced serial
correlation may be an AR(1) equation for the
logarithmic return, with the autoregressive
parameter bounded -1< p <1. A further
alternative in the presence of bid/ask bounce
induced effects may be a MA(]) augmented return
equation, with the MA parameter bounded.
~l<t <0.

Defines, as the return on the asset. Taking
expected values then the unconditional variance
when an AR(i) levels equation is the mis-
specified representation and ¢, set equal to one is

E(s}) = E(a). (4)

When the correct equation is the moving average
MA(1} return representation the unconditional
variance relative to shocks generated via equation
(4) is,

E(s) )y = El(1+ 8%)a] 5

When the correct equation is the autoregressive
AR(1) retumn representation the uncenditional
vartance relative to shocks generated via equation
(4} is,

E(s2) = E[[l’—p] (af)} . 6
1+

1

The conditional variance from a GARCH(1,D)
structure for the AR(1) levels equation can be
rewritten as,

sy = o+ f+.+ f yra(al, + Bal, +. ) (7

A flal )+ Remainder

If the MA(l) return equation is the correct
representation then, relative to the conditional
variance equation from equation (4),

Bishy=ofl+ 8 +.+ G rel+80al, + g+ 05a 4.

B +00a )+ Remainder (8)

If the AR(l) return equation is the correct

representation then, relative to the conditional
variance equation from equation (4),

- 1-p
msmwmm+--+ﬂl’)*“'((1+2}“’2" w‘(wja’z”

Jid (§ — A }af__,_,} + Remainder (9
I+

If w,e, and f, were equivalent in equations (7),
{8) and (%), then when the conditional variance is
driven by the MA(I} return eguation, with 6,
negative, #,(s),, > h(s), and when the
conditional variance is driven by am AR(1} return
equation, with p, negative, A (s) , > A,{(s), and
with o, positive, (s}, <h (s). However, given
the scaling factor in eguation (8) relative to
equation {(9) the potential for distortions to
GARCH parameter estimates is greater when the
underiying process is driven by an AR(1) return
equation relative to a MA(]) return equation.

4. PERSISTENCE, CO-PERSISTENCE AND
NON-NORMALITY

Now define ¢, as shocks from any of the assumed
first moment equations from section 3.

In the univariate GARCH(1,1) structure 4
converges and is  sirictly  stationmary  if
Elln(B, +a,z )<0. Then I 1B +a,z},)
is a random walk with negative drift diverging to
— <0 as the observation interval reduces.

Defining the true processes for the differences in
the natural logarithm of the spot index price, &,
and the natural logarithm of the futures prics, 7,
as:

it 2?!5{ +77:':

(10
f;:}’l{fr+7]ft )

the common ‘news’ factor ¢, is IGARCH, in the
co-persistence structure, while the idiosynchratic
parts are assumed jointly independent and
independent of ¢, and not IGARCH. The
individual processes have infinite unconditional
variance. If a linear combination is not IGARCH
then the uncenditional variance of the linear
combination is finite and a constant hedge ratio
(defined below) leads to substantial reduction in

portfolio risk.

A non optimal restricted linear combination is the
basis change defined as the difference between the

" change in the log of the index futures price and

change in the log of the spot index level. This
implied portfolio is short 1 unit of the spot for
every unit long in the futures.
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If there are ‘news factors’ &, =¢, then the

constant hedge ratio may not exist. Define these
processes as,

L=y, +7,

(11}
J‘; z},z‘g’;: + T]fl
The estimated constant hedge ratio is short »
units of the spot for every 1 unit long in the
futures is,

}':__ Cc;v(f,i)} {A (ﬁvér{;]v;r{;]

=1 Y
v ar(i} l‘f

var(é ]

+var(nqi) (12)
1
;J is the correlation between &£, and £, .
When both £, and £ follow IGARCH processes

and no common factor structure exists then
estimates of the constant hedge diverge. Ghose
and Kroner (1994) investigate this case.

When £, follows an IGARCH process but £, is

weak GARCH then the estimated constant hedge
ratio cannot be evaluated. There are two problems:

(a) the estimated sample variance of &, in
equation (12} is infinite as 7" — 0 and

) p=|[eo ) VEine i aten], sotha

4

there is no linear combination of &, and & which

can provide a stationary unconditional variance.
When observing spot index and futures prices
over successively finer intervals the co-persistence
structure may not hold for at least two further
reasons. This argument relates directly to the
horizon t+kd for the hedging strategy. This
argument also relates directly o distortions
possibly inducad onto a dynamic hedging strategy,
as d—0.

Perverse behaviour can be observed in spot index
fevel changes as over sampling becomes severe.
The smoothing effect due to a large proportion of
the portfolio entering the non and thin trading

“group generales a smoothly evolving process with

short lived shocks generated by irregular news
effects. -
General results assume that the z,'s are drawn
from a continuous distribution. When sampling
futures price data at high frequency then the

discrete nature of the price recording mechanism
guarantees that there are dis-continuities in return

generating processes. The distribution of the z,'s
can become extremely peaked due to multipie
small price changes and can have very long thin
tails due to abrupt shifts in the distribution. As
d =0, ~w<E[n(f +azl )<+o for a large
range of values for 0<e, B, <1 and o, + B, <i
and this depends on the distribution induced by
over sampling and resultant reduction in
(e, + B,). In the limit, E[(z)'V[EEHF —»w.
Then even numbered higher moments of - are
unbounded as d-»0. This over sampling can lead
W two extreme perverse effects generated by
idfask bounce or zerc price changes. The effect
depends upon liquidity in the respective markaets.

CASE 1:

a, Lo, + 8 >tand E{In(f, + a,z> )] > 0.
Over  sampling  approaches  analysis  of
tfransactions. At this level bid/ask bounce and
order splitting require an appropriate model

CASBE 2:

Over sampling can produce many zero price
changes in thin markets. In this latter case as d-»0
then a, + 8, — 0.

Conditional heteroskedasticity disappears as over
sampling becomes severe. The effect on the basis
change when there is a relatively iiliquid futures
market and in the presence of over sampling ‘will
be badly distorting.

5. WEIGHTED GARCH

Recall from equation {1} that f:” is a function
defining the estimated drift in {gzﬁ( 4 o-,"‘)} so that A4
is a function defining true drift in {p(,o*)}. In the

ARCH structure the drift in k(o) in the
diffusion Himit is represented by

K/ #-a’d"/2(3") whereas for the stochastic
differential equation defined from assumptions 2,3
and ' in Nelson and Foster (1991 & 1994) this
diffusion limit is A/¢'+A%¢"/2(p'Y . The effect
on the expression for the bias in the asymptotic
distribution of the measurement error process can
be explosive if derivatives in the terms

Cratd' i 2(g) =K 2"y cannot be evaliated

because of discontinuities in the process. This can

~happen when important intra-day effects are

neglected in the conditional variance equation
specification. As well, the bias can diverge as
d—Qifthe ,Z,,, terms are badly distorted.
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Occasional large jumps in the underlying
distribution contribute large 0, (1) movements
while the near diffusion components contribute

small O, {d "Lg)increments. When sampling intra-

day financial data there are often many small price
changes and these tend to be dominated by
occasional large shifts in the underlying
distribution.

Failure to account for intra-day effects (large
shocks to the underlying distribution) can lead to a

mixture of O (1) and Op(d%) effects in the

process. One approach is to specify this mixed
process as a jump diffusion. An alternative is to
account for these effects by incorporating activity
measures in the specification of conditional
variance egquations.

It follows that failure to account for these 0,1

effects can lead to an explosive measurement error

{¢h.—,h]. However, in empirical applications
this measurement error is unobservable since A,

is unobservable. Failure to account for these
Jjumps in the underlying distribution imply that the
unweighted GARCH(1,1) structure cannot satisfy
the necessary  assumptions required to
approximate a diffusion limit,

6. SUMMARY

Given that market anomalies such as market
opening and market closing effects exist any
volatility structure based on observations sampled
on a daily basis wiil provide different volatility
estimnates.

Gannon (1996) demonstrated that sampling the
process too finely does result in induced positive
or negative serial correlation in return processes.
However, the dominant factor identified in
Gannon  and  Weatherill (1995), distorting
unweighted GARCH estimates, was induced
excess kurtosis in unconditional distributions of
returns. Many small price changes are dominated
by occasional large price changes. This affect
leads to large jumps in the underlying distribution
causing continuity assumptions necessary in
deriving diffusion limit results for the unweighted
GARCH structure to break down. Conditional
volatility estimates may approach the (IGARCH)

boundary and become explosive or conditional

heteroskedasticity may disappeds,
The relative importance of mis-specification of the

in deriving diffusion lmit results for the
unweighted GARCH structure. If these effects are
severe then an implied lower sampling boundary
needs to be imposed in order to obtain sensible
results. Distortions to parameter estimates are
most obvious when conditional second moment
equations are mis-specified by failure to
adequately account for observed intra-day trading
patterns. These distortions can be observed across
a wide class of financial asset and markets,
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second moment equation dynamics over mis-

the most important issue. If inira-day trading
effects are important this has implications for
smoothness and continuity assumptions recessary
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